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Executive Summary 

The proposed research has been focused on the modeling of quantum processes 
in intersubband lasers of Si/ZnS superlattices, which could potentially offer the great 
opportunity for monolithic integration of Si-based photonic devices with advanced Si 
electronics. There are many new important and interesting quantum effects in this new 
mixed polar-nonpolar material system, arising from the fact that not only the carriers 
are confined, but also the polar and nonpolar optical phonons. So far, there has been 
little reported investigation on this material system. During the period of this research 
contract, we have calculated the valence subband engeries and wavefunctions in Si/ZnS 
quantum well structures. We have also established models for the confined optical 
phonons in Si/ZnS superlattices. Optical phonon modes in Si and ZnS layers are totally 
confined within their respective layers since both layers can be treated as infinitely rigid 
with respect to the other layer. Since there are no associated electric fields with nonpolar 
optical phonons in Si layers, only a mechanical boundary condition needs to be satisfied 
for these nonpolar optical modes at the Si-ZnS interface. The optical phonons in Si 
layers can be described by guided modes consisting of an uncoupled s-TO mode and a 
hybrid of LO and p-TO modes with no interface modes. In ZnS layers, a continuum 
model hybridizing the LO, TO and IP modes is necessary to satisfy both the mechanical 
and electrostatic boundary conditions at the heterointerface. A numerical procedure is 
provided to determine the common frequency between LO, TO, and IP modes. This is 
a new procedure for obtaining the eigen modes of a mixed polar-nonpolar heterosystem. 
Analytical expressions are obtained for the ionic displacement and associated electric 
field as well as scalar and vector potentials. The established optical-phonon model has 
then been used to calculate the phonon scattering process of heavy holes in Si/ZnS 
heterostructures. Our results indicate that contributions to the intersubband scattering 
rate from Si or ZnS confined optical phonons depend strongly on the distribution of 
envelope wave functions over the respective layers within which different types of optical 
phonons are confined. This work established a theoretical foundation for studying the 
lasing lifetimes of Si/ZnS intersubband lasers. 
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I. INTRODUCTION 

The demonstration of the InGaAs/AlInAs intersubband quantum cascade laser 
at A = 4.2/zm[l, 2] has spurred interest in the use of silicon as the lasing material 
because of its integrability with advanced silicon microelectronics[3, 4]. There is also 
interest in moving the lasing from the far- and mid-infrared range to the near-infrared 
optical communications wavelengths, A = 1.3 or 1.55/«n[5]. Since the latter wavelength 
corresponds to a photon energy of 800meV, the Si^Gex/Si heterosystem is inadequate 
because a maximum practical valence band offset of only ~ 500meV can be obtained 
for pseudomorphic Sii_xGex layers at x = 0.5 ~ 0.6. Therefore, alternative large- 
bandgap, nearly lattice-matched barrier materials for Si quantum wells must be sought; 
materials with sufficiently large band offsets with respect to silicon. Possible candidates 
include, ZnS, BeSeTe, CaF2, SiOx, Si02) the Si/Si02 superlattice, and 7-Al203, among 
others [5]-[7]. 

The Si/ZnS heterosystem has received the most attention as current advances 
in epitaxy technology have allowed the growth of heterostructures consisting of polar 
and nonpolar materials [8, 9]. The lattice mismatch of cubic ZnS with respect to Si 
is only 0.3%. The valence band offset has been predicted theoretically[10]-[13], while 
recent experiments[14] show that the value is close to 1.5eV, sufficiently large to give 
intersubband energy differences in the desired 800meV range. MBE growth of ZnS 
upon Si, and Si upon ZnS have been demonstrated[9], with the use of an As monolayer 
to satisfy the local bonding requirements, although the effect of the monolayer on the 
offsets has not been determined. 

The possibility of population inversion and the operation of intersubband lasers 
depend critically on the lifetimes of the involved subbands. The subband lifetimes in 
turn are determined by nonradiative phonon scattering processes. The purpose of the 
present paper is to study the optical phonon modes and their interaction with carriers 
in the Si/ZnS system since the optical phonon scattering is considered to be dominant 
in the phonon scattering processes. This combination of materials is new, since it con- 
sists of both a nonpolar and polar semiconductor. Previous studies in carrier scattering 
by confined optical phonons in heterostructures have been focused only on one type of 
phonons, either polar[15]-[23] or nonpolar[24]-[27]. In the current situation involving 
both polar and nonpolar materials, carrier scattering by both types of phonons needs 
to be considered. To the best of our knowledge, there has not been any reported in- 
vestigation on this mixed nature of optical phonons, their confinement effect, and their 
interaction with carriers in a heterostructure. In this paper, we will present a theoret- 
ical study based on the macroscopic continuum model to describe the confined optical 
phonon modes and will use this model to calculate the optical-phonon scattering of 
heavy holes in a heterostructure consisting of polar (ZnS) and nonpolar materials (Si), 
as we are interested in the feasibility of constructing an intersubband laser within the 
valence band of the Si/ZnS heterostructure. This valence intersubband laser will likely 
be a quantum-parallel superlattice laser[28] or a quantum cascade laser.   Our latest 



thinking[29] is that each of the N laser periods will consists of one square Si quantum 
well containing two active heavy-hole subbands. Due to the non-parabolicity of these 
subbands, we believe that a population inversion, localized in ft-space, can be engineered 
between the subbands. In this investigation, we will consider a simple superlattice com- 
prised of alternating layers of Si and ZnS, much like the flat-band superlattice of the 
quantum parallel laser (Fig. 2(b) of [28]). The results of this study will provide the basis 
for the calculation of subband lifetimes required to determine laser gain and threshold. 

As described below in greater detail, since the optical dispersions (frequency 
versus wavevector) of the silicon (husi = 64meV) and zinc sulphide (huzns = 43meV) 
have no overlap, the optical phonons are assumed to be totally confined in both materials. 
In the silicon layers, a continuum model with double hybridization of the longitudinal 
optical (LO) and transverse optical (TO) modes is used to describe the vibration patterns 
of the guided modes[24]. The only boundary condition that needs to be satisfied in the 
Si layers is the vanishing of the displacements at the Si-ZnS interface, since the ZnS 
layers can be considered as infinitely rigid with respect to the vibrations of the Si layer. 
Hence, there is no interface mode in the Si layers. The situation on the ZnS layers is more 
complex. Following the work by Ridley[16, 17], here a continuum model is employed 
with hybridization of the optical LO, TO, and interface polariton (IP) modes needed 
to satisfy both the mechanical and electrostatic boundary conditions at the interfaces. 
Specifically, the electrostatic boundary conditions are the continuity of Ex, the electric 
field parallel to the interface, and the continuity of Dz, the displacement field normal to 
the interface. The mechanical boundary condition is again the vanishing of the optical 
displacements since the Si layers can be considered as infinitely rigid with respect to the 
vibrations of the ZnS layers. 

Our current work provides a complete set of analytical expressions for the optical 
phonon dispersion relations, optical displacements, and associated scalar and vector 
potentials. These expressions are subsequently used in calculating the interaction of 
heavy holes with the confined optical phonons. In Section II, we establish a continuum 
model for the optical displacement modes in Si and ZnS layers satisfying both mechanical 
and electrical boundary conditions. In section III, we outline a numerical procedure for 
determining the frequency of a ZnS optical mode inducing the intersubband scattering. 
In Section IV, we describe the scalar and vector potentials associated with the ZnS 
ionic displacement modes. In Section V, we calculate the intersubband scattering rate 
due to the emission of Si and ZnS optical phonons since the emission process is rather 
significant compared to the scattering process of optical phonon absorption. In Section 
VI, we summarize and discuss our results and conclusions. 

II. Mode Patterns 

A continuum model for the optical modes in the Si/ZnS superlattice is employed. 
Both mechanical and electrical boundary conditions are satisfied at the heterointerfaces. 
Since the optical dispersion relations (frequency versus phonon wavevector) in the two 



bulk materials have no overlap, the phonons are taken to be confined in their nspective 
materials. For the Si layers, the continuum model for optical phonons in nonpolar 
materials[24, 26] is used. Here double hybridization of the LO (longitudinal optical) 
and TO (transverse optical) modes is used to give the vibration patterns of the guided 
modes. Since the ZnS layers are infinitely rigid with respect to the vibrations of the Si 
layers, only the mechanical boundary condition, the vanishing of the displacements at 
the interfaces, has to be satisfied. 

For the polar ZnS layers, the situation is more complex and an alternate contin- 
uum model[16, 17] consisting of an intermixing of confined LO, TO, and IP (interface 
polariton) modes is needed in order to satisfy both the electrostatic and mechanical 
boundary conditions. The boundary conditions which must be satisfied are (1) the con- 
tinuity of Ex, the component of electric field parallel to the interface, (2) the continuity 
of Dz, the component of the displacement vector normal to the interface, and (3) the 
vanishing of the vector displacement u at the interface. 

A. Modes in Si Layers 

As discussed above, since the ZnS layers can be treated as infinitely rigid, the 
boundary condition to be satisfied in the Si layers is the vanishing of the ionic dis- 
placement of all confined vibration modes. This is an assumption of strict confinement 
yielding only the guided modes. As pointed out in the continuum theory[24], the ionic 
displacement of confined vibrations has two components: one is the hybrid of the LO 
and p-polarized TO (p-TO) modes, and other is the uncoupled s-polarized TO (s-TO) 
mode. These modes are defined as follows: If we consider a (x,z) plane containing the 
normal to the layers and the phonon wavevector Q, then 

Q = qxex + q»€s (1) 

where ex and ez are unit vectors. The p-TO mode has its displacements normal to Q 
and in the plane, while the s-TO displacements are normal to Q and perpendicular to 
the plane (||ej,). 

The form of the ionic displacement, scalar, and vector potentials in one superlat- 
tice period differs from that in a neighboring period only by a phase factor proportional 
to the Bloch superlattice wavevector qSL. Their expressions given below are obtained 
by taking qsL = 0. A description of the s-TO mode is 

uy = t^*(A§.To^" + B.-TOC-***), (2) 

while the hybrid of the LO and p-TO modes is given by 

Ux = e^lq^ÄLoe^ + BL0e-^z) + qr{Av.TOti(iTZ + Bp.Toe~iqTZ)], ,„s 
uz = ^{qjXAuoe*» - BLoe-w) - qx{AP-ToeiqTZ -B„_Toe-<«r")]> 

{ } 

which are confined within the Si layer with a width of dst, 0 < z < dsi- The z- 
components of the LO and TO wavevector have been distinguished by qi and qr, re- 
spectively. 



Since the LO and TO modes must have the same frequency to be effectively 
coupled, we must satisfy the condition 

' uP = u)% - a\{q\ + q\) = u2
0- <4{& + ql), (4) 

where uo is the bulk Si optical phonon frequency at T point, at and OLT are the sound 
velocities of LO and TO dispersions in Si, respectively. 

Using the boundary condition that u = 0 at the interfaces gives for the s-TO 
mode nie 

uy — Aet9xXsin(qzz),        with  qz = —- (5) 
"St 

where n = 1,2, • • • and A is a mode coefficient.  This mode does not mix with other 
modes. 

The hybrid LO and p-TO modes admit two classes of solutions. The 'sine' solu- 
tion is 

ux   = 2Be%QxXqx[cos(qLz) - cos{qTz)], 

uz   =2iBeik*xlqLsm{qLz) + ^-sm{qrz)], ^ ' 

and the 'cosine' solution is 

ux   =2iBeii**[qxsm(qLz) + ^sin{qTz)}, 
Qx (7) 

uz   =2Bet9xXqL[cos(qLz)-cos{qrz)} 

qL = -—     and     qT = ——, (8) 
asi dsi 

where TIL = 1,2, • • •, ny = 3,4, ■ ■ •, rir — "^L — 2,4,6, • • •, and B is a mode coefficient. 
No interface modes exist in the Si layer because of the boundary condition u = 0. 

The lowest s-TO mode pattern in Eq.(5) for qz = it/dsi is shown in Fig. 1(a) 
within a Si layer of dsi = 40A, while the hybrid patterns of the lowest p-TO and LO 
modes with q^ = n/dsi and qr = 37r/dsi are shown in Figs. 1(b) and 1(c) for the 'sine' 
and 'cosine' solutions given in Eqs.(6) and (7), respectively within the same Si layer. The 
strict confinement which requires the vanishing of ionic displacements at the boundaries 



of Si layers is clearly demonstrated for both vibration modes. 
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Figure 1. Vibration patterns in a Si layer with a width of 40Ä for (a) the guided s-TO 
mode, (b) the 'sine' solution, and (c) the 'cosine' solution of the guided p-TO and LO 
modes. 

B. Modes in ZnS Layers 

The boundary conditions are the continuity of Ex, Dz, and the vanishing of u at 
the interfaces. These conditions can be satisfied by a unique linear combination of LO, 
TO, and IP modes with common frequency and common in-plane wavevector qx, 

u = uLO + uTO + UTp. (9) 

We will use this hybrid expression to calculate the electrical interaction with carriers 
which is considerably stronger than the optical deformation potential interaction. We 
need consider only the displacements ux and uz, since uy associated with the s-TO mode 
has no related electric field and therefore does not interact with carriers electrically. 
Once again, the expressions are obtained by taking the Bloch superlattice wavevector 
QSL = 0. 

For the LO mode, the ionic displacements are 

ux = e**'*-ut>qs{AL(to1-* + BLe-^z), (10) 

which is confined within the ZnS layer with a width of dzns, —dzns/% < z < dzns/% 

The associated electric fields are 

Ex = -p0ux,      Ez = -p0uz, (11) 

where 

Po = eon' 
(12) 



with the effective ionic charge 

e*2 = MQu^loeK- - i), (13) 
Coo       Cs 

where M is the reduced mass, e0 is the permittivity of free space, Coo, e« are the high- 
frequency and static permittivities, and ti is the volume of primitive unit cell. The scalar 
potential <f> associated with the electric field E = -V<£ is in turn given as 

<f> = -*p0e
i<fcX-wt> {AL^* + BLe-iqLZ). (14) 

For the TO mode 

ux = e^-^qriAreW* + BTe-iqTZ), 
uz = -e^^-^q^Are^2 - BTe-igTZ). 

The electric fields associated with this mode are negligible. 

For the IP mode 

ux = ei{a'*-ue>qp{Apeu*'x + BPe-iq*z), 
uz = iei^'x-u^qp(APei^* - BPe-iq>z) 

(15) 

(16) 

The associated electric fields are 

Ex = -pPux,      Ez = -ppuz, (17) 

where 
, i2      , ,2 u  -LOTO , fi, 

and OJLO and WTO are bulk ZnS LO and TO optical phonon frequencies at T point, 
respectively. The electric fields associated with the interface modes propagate into the 
Si layers although they are treated as infinitely rigid and do not contain ZnS ionic 
displacement. 

Being a transverse electromagnetic wave, there is a vector potential A associated 
with the electric field E = -dA/dt. Within the ZnS layers, 

Ax = iP?-ei{qxX-ult)qJApeiqvZ + BPe-iq"z); 
u) (19) 

Az = -P^ei^x-U3t\p{Apei^z-Bpe-ig"z) 

While in the Si layers, a similar expression can be obtained with another set of mode 
coefficients, Api and Bp\. 

Since large in-plane wavevectors are likely to be involved when dealing with carrier 
transitions due to optical phonons between two subbands separated with a relatively 
large energy, we have endeavored to obtain analytical dispersions of the LO and TO 



optical branches by curve-fitting the experimental bulk phonon dispersions for the entire 
Brillioun zone. The requirement for common frequency yields, 

u   =uLO-ßL{ql + ql) 
= u)TO -PT(<&+ QT) 

_c(q2
x + Q2

PY
/2 

n(u) 

(20) 

where ßL = O.SOSTHz • A2 and fir = 2.194THz ■ A2 are obtained from curve-fitting 
the bulk ZnS optical phonon dispersions, c is the velocity of light in vacuum, and n(u) 
is the index of refraction. In the above expressions, the frequency in the ZnS layers 
lies between the ZnS LO and TO zone center frequencies. Since uypo < ^LO, in order 
for the TO frequency to be equal to a LO frequency q? must be imaginary q? = iq0, 
corresponding to a TO interface mode. The modes which interact most strongly with 
carriers are those with frequencies near the LO branch. For these modes, the value of 
q0 is large, and we can take the approximation 

ta.nh(q0dzns) » 1. (21) 

In the unretarded limit (c -*■ oo), q\ + q^ « 0 for the IP mode. Hence, qv « iqx. 

Applying, at the two interfaces between layers Si and ZnS in a period of the 
superlattice, the conditions that ux and uz equal to zero along with the continuity of Ex 

and Dz, leads to eight simultaneous equations involving the eight unknown mode coef- 
ficients (AL, BL\ AT, BT] Ap, Bp; and Api,Bpi). The following two ionic displacement 
mode patterns emerge for the hybrid in Eq.(9) taking the Bloch superlattice wavevector 
qsL = 0 and the approximation tanh(q0dzns) & 1- Both ionic displacement patterns are 
confined within the ZnS layer, —dzns/% < z < dzns/2. For the first type, 

ux —   2iBeiqxXqx{sm(qLz) 

-[1 - Pl tanh(fecW2)] MQLdzns/2)-r ^^ 
smh(q0dZns/2) 

-Pl Sm{qLdZnS/2) r-r— '-7-r}, 
cosh(qxdzns/2) 

uz =   2BeiqxXqL{cos(qLz) 

ql [1 - Pl tanh(qxdzns/2)] sm{qLdZnS/2)-r COsh^) 

(22) 

UV« smh(q0dznsß) 
qx      .  f     ,      . »     cosh(qxz) 
 px sm(qLdzns/2)—rj—, j^r}, 

qh cosh{qxdzns/2) 



and for the second type, 

ux =   2BeiQxXqx{cos{qLz) 
coshto z) 

-[1 - p2 coth{qxdZnS/2)] cos(qLdZnS/2) ° J 

smh[q0dzns/2) 
i   A     /o^     coshes) 

-p2cos{qLdZns 2) .,,    , T^T}, 

uz =   2z5e,9*Igz,{sin(gLz) 
92 r , , '  ,      /^M      / /«\     sinh(g0z) 

'    ^    1 -ftCOth fedgns/2) COS g^ns/2) •    V     ' 

(23) 

+ —P2 cos{qLdzns/2)        ,      TTT}, 
qt sinh{qxdzns/2) 

where 

cosh(gxdSi/2) cosh(9zd2n5/2) 
Pl   = d ' 

sinh(gxdst/2) smh(qxdZns/2) 
P2   = d ' (24) 
d    = r smh(qxdSi/2) cosh(qxdZns/2) + sinh(qxdZns/2) cosh(qxdSi/2), 

_ fpi. 
Cp2 

and epi and ep2 are the permittivities in Si and ZnS layers, respectively, with 

_     u2 - ul0 . 
Cp2 — eoo"~5 ö~ • (25) 

To illustrate the patterns of ionic displacements in the ZnS layers given in Eqs.(22) 
and (23), we need to first determine values for qx, q^ and q0. To do so, we will follow 
the numerical procedure described in Section III by arbitrarily fixing a value for the in- 
plane phonon wavevector qx = 7r/(5azns), where azns is the lattice constant of ZnS. In 
calculating the carrier-optical phonon interaction, the value of qx is actually determined 
by the conservation of in-plane momentum between the initial and final states of the 
scattering process. For a given value of qx, typically, a set of hybridized modes can be 
obtained. Here, we show only the mode pattern with frequency close to ULO- 

We obtained %UJ = AlmeV, qL = 0.46 x 108/cm and q0 = 0.48 x 108/cm. Substi- 
tuting these values into Eqs.(22) and (23), we obtained Figs.2(a) and 2(b) showing the 
mode patterns of ionic displacement of both the first and second types, respectively in 
a ZnS layer of dzns = 20A. It can be seen from Figs.2(a) and 2(b) that the mechanical 
boundary condition, vanishing of the ionic displacements at the interfaces of Si and ZnS 

10 



layers, is satisfied. 

Figure 2. Vibration patterns in a ZnS layer with a width of 20A for (a) the first type 
and (b) the second type solutions of the hybridized LO, TO and IP modes. 

III. Dispersion Relationship 

The phonon frequency in the ZnS layers is determined by the following set of 
equations; 

' u = u)LO- ßL(ql + ql), 
*   uJ = u)TO-ßT(ql-q2

0), (26) 
k h+t2 cos(qLdzns) + h s™{qLdZns) = 0 

where 
«i =   Ap smh(qxdSi) + Apr smh(qxdZns), 
t2 =   -Apa, 
tz =   8p2r smh(qxdZnS) smh(qxdSi) - 4p2a2 

+4p2r2 sinh2(qxdZns) + Ap2 smh2{qxdSi) + 1, 
with 

and 

P = AqLrsd 

u)  — u, 
s = TO 

^LO ~ ^TO 

(27) 

(28) 

(29) 

The third equation in (26) is obtained from the requirement of a nonzero solution for 
the eight simultaneous equations discussed above, and Eq.(27) is arrived at under the 
approximation, ta,nh(q0dzns) Ä 1- 

The numerical procedure for determining a phonon frequency is the following: 
given a value of qx, we can determine those of t\, t2, and t3 from Eq.(27). Then u is 
scanned from uTo to uLO- For a given value of u, qL and q0 are obtained from the first 

11 



two equations in (26). Those values are then substituted into the third equation in (26) 
to determine if the particular value of u; is a solution. 

IV. Scalar and Vector Potentials 

Associated with the two types of ionic displacement in Eqs.(22) and (23), the 
scalar potentials in ZnS layers are given as, for the first type, 

dznS ZnS layer, 2p0Beig*xsm{qLzl)   \zx\ < 

0 1*21 < Hr      Si layer, 
(30) 

and for the second type 

' -2»/>0Be**x coster)   W\<d^f-   ZnS layer, 

1221 < -jr    Si layer- 

(31) 
0 

Note that we have used two different coordinates zx and z2 for layers ZnS and Si, re- 
spectively, with their origins placed at the centers of the respective layers. 

The vector potentials can be obtained, for the first type, 

Ar= < 

2sp0qx _ i0rX     .  ,    j      /0N     sinh(gxzi) 

tqxpo 
cosh(qxdZns/2) 

2isp0qx 

Be^'Vi smh(qxz2) 

u 
4iqxPo 

Beiq*xPlsm(qLdZnS/2) 
cosh(qxzi) 

cosh(qxdzns/2) 

Beiq*xVx cosh(gx22) 

|*i|<^=£ ZnS layer, 

1221 < -y Si layer, 

|zi|<^ ZnS layer, 

\z2\ < -y Si layer, 

(32) 

(33) 

and for the second type, 

2isp0q: 

Ax = < 
4iqxPo 

Beiq*xp2cos(qLdznsß) ■ T,Sh(?z2lL    N<%^   ZnS layer, 
sinh(gIdZns/2) 

Beiq*xV2 cosh {qxz2) 

2 

1221 < y      Si layer, 

Az = 
'     *WkB^*p2 COs(qLdzns/2) J^(**L   l*l<%*   ZnS layer, 

(34) 

4QXPO 

sinh(qxdznsfi) 

u 
Be'g*xV2smh(qxz2) \z2\ <?f      Si layer, 

(35) 

12 



where 
Vx   = 

V, 

rsm(qLdZnS/2) cosh(qxdZnS/2) 

r cos{qLdzns/2) smh(qxdZnS/2) (36) 

2d 
and pi, P2, and d are given in Eq.(24). 

The scalar potentials associated with the LO modes are strictly confined within 
the ZnS layers. Their distributions are shown in Fig.3 for the first and second types 
given in Eqs.(30) and (31) with qL = 0.31 x 108/cm, dZns = 20Ä, respectively. 

The vector potential associated with the IP modes are distributed in both Si and 
ZnS layers, even though Si layers are treated as infinitely rigid and do not contain ZnS 
ionic displacements. The profiles for the two components of the vector potentials given 
in Eqs. (32-35) for the first and second types with dsi = 40Ä, dZns = 20A are shown in 
Figs.4(a) and 4(b), respectively. 

s    1 c 
3 

u 
IS 

o 

O 

Si 

second type — 

ZnS 

first type — 

0 

-1 

-2 

-40    -30    -20    -10      0      10     20 

Z(A) 

Figure 3. Scalar potential distribution associated with the LO modes in a period of 
the Si/ZnS superlattice with d$i = 40A and dZns = 20Ä for both the first and second 
types of the vibration modes. 

It can be seen from Figs.3 and 4 that both scalar and vector potentials are 
not continuous across the interfaces. However, as pointed by Ridley[16], the energy of 
interaction with an electron traveling coherently with the optical phonon is continuous. 
The electric field can be obtained as 

dA 
df 

The continuity of Ex and Dz = e(u)Ez implies that at the boundaries, 

uAx\Z3=±dsi/2 = -9*^|*i=T«*Zns/2 +uAx\Zl=:fdznS/2, 

Az\z2=±dSi/2 = 7*-<4zUi==Fdzns/2> 

(37) 

(38) 
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where A\x and A\z are x- and z-components of the vector potential in Si layers. The 
interaction in the Si layer is e{Aixvx + Auvz) and in the ZnS layer e{-<f> + Axvx + Azvz), 
which are equal when the electron velocity vx = u/qx and vz = 0. Thus, the coherent 
interaction energy is continuous across the interfaces. 

1.00 

e 
3 

•e 

e u 

£ 
u u > 

-30   -20   -10     0 

Z(A) 
10    20 

a 
s 

■§ 
m 

•S 
c u 

£ 

-0.20 

Figure 4. Vector potentials associated with the IP modes distributed in a period of the 
Si/ZnS superlattice with dSi = 40A and dZns = 20A for (a) the first type and (b) the 
second type of the vibration modes. 

The electric field distributions for Ex and e(u) in Si (rfSi = 40A) and ZnS (dZns = 
40A) layers are shown in Figs.5(a) and 5(b) for the first and second types, respectively. 
The continuity of Ex and Dz across the Si and ZnS interface according to Eq.(38) is 
clearly demonstrated. 

a 
*c 
9 

i 
c 
.o 
3 
XI 
•fi in 
5 
■o 

-0.2 
-40    -30    -20    -10     0 

Z(A) 
10     20 

Figure 5. The field distributions, Ex and Dz, derived from the scalar and vector 
potentials, in a period of the Si/ZnS superlattice with dsi = 40Ä and dZns — 20A for 
(a) the first type and (b) the second type of the vibration modes. 
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V. Intersubband Scattering 

Since the optical modes in the Si/ZnS superlattice consist of confined nonpolar Si 
and polar ZnS optical phonons, the calculation of carrier scattering by optical phonons 
in such a structure needs to include contributions from both types of phonons. The 
Hamiltonian that describes the carrier interaction with the nonpolar Si optical phonons 
is given by [30] 

tf=^D-u (39) 

where D is the optical deformation potential. This Hamiltonian obviously vanishes 
outside of the Si layers in the Si/ZnS superlattice since the Si optical displacement 
modes are strictly confined within the Si layers. However, the carrier interaction with 
the confined polar ZnS optical phonons extends over both ZnS and Si layers. The 
electrical interaction Hamiltonian can be obtained using the scalar and vector potentials 

H=-e<j)+ —A • p, (40) 

where p is the momentum operator, e and m are the free electron charge and mass, 
respectively. Although the scalar potential $ associated with the LO mode vanishes in 
Si layers, the A • p interaction exists in both layers since the vector potential associated 
with the interface modes in the ZnS layers as shown in Fig.4 propagates into the Si 
layers as well. 

A. Scattering due to Si Phonons 

The displacement patterns described in Eqs.(5-7) all contain an arbitrary constant 
for the mode amplitude which can be normalized by equating the energy of the vibration 
mode with that of a simple harmonic oscillator[16] 

x2=s.Tv'u'b' <4i> 
where S is the sample surface area (in (x, y) plane), O is the volume of the unit cell, and 
X is the normal coordinator of the oscillator. The heavy-hole state can be characterized 
by |k, n > with the in-plane momentum k and subband index n. In the approximation 
of constant effective mass for heavy holes, the matrix element for the transition from 
state |k, n > to |k', n' > due to the emission of a nonpolar Si optical phonon is 

<k',n'|F|k,n>= < 

h[n(u0) + l] 
:ök'±qX)köJ,G^n,(^)      (s-TO) 

2pSiuJoSdsiAA(qz) 
h[n(u}0) +1] (42) 

Ök'±qx,k 
2pSiU}0SdsiAc(qL,qT) 

• [DxG
x

nn, (qL, qr) + DzG*nn, (qL, qT)}    (hybrid), 

for the s-TO mode and the hybrid of the LO and p-TO mode, respectively.   n{u0) 
is the number of Si optical phonons at thermal equilibrium, and psi is the density 
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of Si. The three components of the optical deformation potential, Dx, Dy, and Dz 

are assumed equal to D0 = D/y/3 in the calculation, in view of the assumption of 
isotropy. The Kronecker symbol indicates the in-plane (x,y) momentum conservation. 
The normalization factors are given by 

AA(fc) = -/- fdS'u'yUydz (s-TO), dsi\   L (43) 
AC(9L,9T)= J- /     «Ui + «X)dz (hybrid). 

dsi Jo 

The Gn„'-functions contain envelope wavefimctions, Vn and V£, from which interference 
effect can be obtained. Specifically, 

GSn'(fc) = rWn'Uydz, (44) 

for the s-TO mode, and 

Gx
nn.{qL,QT)= f SXWituxdz, 

J}dSi (45) 
GZ

nn, {qL ,QT)= Wn' Uzdz, 
J 0 

for the hybrid of LO and p-TO mode. The heavy-hole energy levels and envelope wave- 
functions are obtained by the finite square well model for the superlattice with the 
heavy-hole band offset taken to be 1.5eV[14]. 

Applying the Fermi golden rule, we obtain the scattering rate due to the emission 
of a nonpolar Si optical phonon, 

' mh[nM + l]Pg E   \GL>\2 (s.T0) 

w~-   "W^n-iW^B^l (hybrid), 
(46) 

where we have assumed that for the intersubband process (n ^ n') the heavy holes are 
scattered from the bottom of their original subbands (k = 0), and the sum is over those 
participating modes of Eq.(8) that, according to Eq.(4), yield values of qx satisfying the 
in-plane momentum conservation[24]. 

B. Scattering due to ZnS Phonons 

The normalization of the amplitudes of the confined ZnS displacement modes 
can be carried out by equating the energy of a hybrid, a mixture of mechanical and 
eletromagnetic energies, with that of a simple harmonic oscillator[16]. Since only the IP 
mode contributes electromagnetic energy which is small in magnitude when compared 
with the mechanical energy, neglecting it entirely will introduce little error in evaluating 
the energy of a hybrid ZnS mode. We therefore can use Eq.(41) for the normalization 
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of a ZnS mode, except that now the integral is over the ZnS layer, dzns- The matrix 
element for the transition from state |k, n > to |k', n' > due to the emission of a polar 
ZnS optical phonon is 

<V,ri\H\k,n>= \  ÖW—T~\ ök'±qx,k(-Gnn, + —(JW - —Wn'i   l47J 

for both the first and second types. n(u>zns) is the number of ZnS optical phonons at 
thermal equilibrium,.and 

1        1       ' (48) 

The normalization factors for both the first and second types can all be calculated by 

1 fdznS 
A1>2 = -— /       {u*xux + uzuz)dz (49) 

dZnS JO 

with optical displacements given in Eqs.(22) and (23). The Gnn>-functions containing the 
interference effect between two subband envelope wavefunction, ipn and ipn>, are given 
specifically as 

<*L = - fdZnS WWn-dz, (50) 
for the scalar potential scattering associated with the LO modes, and 

I     fdznS Gnn' = tn AxlJ>*n1pn>dz, 
yWs     a (51) Gnn> = TojQ Azrn^n'dz, 

for the vector potential scattering associated with the IP modes. Applying the Fermi 
golden rule, the intersubband scattering rate due to the emission of a polar ZnS phonon 
can then be obtained by taking summation over contributing confined ZnS optical modes 

I       /~«t>      1 x /-ix (~<z    12 
Wnn> = ^^hhH^Lo) + lRo v- '" ^"^m    ""' ~m   "n'' /52) 

2^ dznStp gL ^1,2 

where we have again assumed that the heavy holes are scattered from the bottom of 
subband n (k = 0), and have taken the approximation of ujzns — <^LO since the modes 
which interact most strongly with carriers are those with frequencies near the LO branch. 

C. Intersubband Scattering Rates 

The scattering rates due to the emission of Si and ZnS optical phonons were 
calculated for the intersuband transition (2-1) originated from the bottom of the heavy- 
hole subband 2 with zero kinetic energy to heavy-hole subband 1. Figure 6 shows the 
2-1 scattering rates as a function of the Si well width while fixing the barrier width at 

17 



dzns = 40Ä in the Si/ZnS superlattice. The total scattering rate is the summation of 
contributions from the heavy-hole interaction with Si and ZnS optical phonons. In the 
small well width region (dSi < 30A), the heavy-hole scattering due to the ZnS optical 
phonons is stronger than that due to the Si optical phonons. This is attributed to the fact 
that when the Si well width is small there is significant envelope function overlap between 
subbands 1 and 2 in the ZnS barrier region where the ZnS LO phonons are confined. As 
the well Width increases, the distribution of envelope functions in the barrier decreases. 
As a result, the scattering due to the ZnS LO phonons reduces considerably and the ZnS 
phonon scattering is mostly through IP modes which propagate throughout the super- 
lattice structure. As the well width continues to increase, the energy separation between 
subband 1 and 2 decreases. The intersubband scattering between these two subbands 
requires an emitted ZnS phonon with a small in-plane wavevector (qx) in order to satisfy 
the in-plane momentum conservation for the scattering process to take place. This leads 
to an increased intersubband scattering rate since polar optical phonons with smaller 
wavevectors interact more strongly with carriers to induce intersubband transitions as 
suggested by the well-known l/(ql + ql) dependence of the interaction Hamiltonian in 
polar material quantum wells[15]. A similar dependence of the intersubband scattering 
rate of Eq.(52) due to the confined ZnS optical phonons is implicitly included in the nor- 
malization factor (Aii2) given by Eq.(49). Further increasing the well width to dsi > 82Ä 
causes the energy separation between the two subbands to be less than the ZnS optical 
phonon energy (43meV) and the heavy holes at the bottom of subband 2 cannot emit 
ZnS optical phonons to make a transition to subband 1, resulting in zero scattering rate 
due to the emission of ZnS optical phonon. The scattering rate due to the emission 
of Si optical phonon confined within the Si well demonstrates a steady decrease as the 
well width (dsi) increases, which suggests that the factor 1/dsi in Eq.(46) dominates 
the small increase in the interference effect Gnn' function. As the well width increases 
beyond 62A, the energy separation between the two heavy-hole subbands becomes less 
than the Si optical phonon energy (64meV). As a result, the scattering rate due to the 
emission of Si optical phonons reduces to zero, in which case the heavy-hole lifetime 
of subband 2 can be enhanced dramatically since the significant scattering process of 
optical phonon emission is suppressed although the weaker optical phonon absorption 
and acoustic phonon scattering processes are still possible. 

Figure 7 shows the intersubband scattering rates between the same two heavy- 
hole subbands due to the emission of both Si and ZnS optical phonons as a function of 
the barrier width (dzns) in the Si/ZnS supperlattice. The well width (dsi) is fixed at 
30A. The scattering rate due to the emission of Si optical phonons remains unchanged 
as the barrier width varies since the subband energy levels are hardly shifted and the 
Gnn/-function for the Si phonon scattering has little noticeable change. The scattering 
rate due to the emission of an ZnS optical phonon, on the other hand, demonstrates 
a decreasing trend as the ZnS barrier width increases as suggested in Eq.(52) with the 
factor of 1/dznS- The small discontinuous incremental steps in the ZnS-scattering curve 
are due to the discrete nature of the increase in the number of allowed LO modes confined 
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in the ZnS barrier as it increases. 
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Figure 6.   Intersubband scattering rates due to the emission of Si and ZnS optical 
phonons as a function of Si well width (d5i) for a barrier width of dZns — 40Ä. 
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Figure 7.   Intersubband scattering rates due to the emission of Si and ZnS optical 
phonons as a function of ZnS barrier width (dzns) for a well width of dsi = 30A. 

VI. Summary and Discussion 

We have provided an analytical model of optical modes in Si/ZnS superlattices 
consisting of polar and nonpolar optical phonons. This is a new procedure for obtaining 
the eigen modes of a mixed polar-nonpolar heterosystem. In the Si layers, a continuum 
model with double hybridization of the LO and TO modes is used to describe the 
vibration patterns. Since there is no electric field resulting from the nonpolar ionic 
displacements in Si layers, the only boundary condition that needs to be satisfied in the 
Si layers is the vanishing of the displacements at the Si-ZnS interface, as the ZnS layers 
can be considered as infinitely rigid with respect to the vibrations of the Si layer. Due to 
this strict confinement, only guided modes emerge in the Si layers which consist of s-TO 
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and coupled p-TO and LO modes, with no interface modes. These guided modes have 
been illustrated. Their interaction with carriers in the superlattice can be calculated 
through the optical deformation potential for Si. The interaction Hamiltonian can be 
obtained by taking the product of this potential with the normalized ionic displacement. 

However, for the optical phonons in ZnS layers, we need to include the electrical 
interaction in calculating the carrier scattering by optical phonons, since there are elec- 
tric fields associated with the polar optical vibrations. As a result, both mechanical and 
electrostatic boundary conditions need to be satisfied in the interfaces. A continuum 
model employing a linear combination of LO, TO and IP (interface polariton) modes 
with a common frequency is used to describe the ionic displacements in ZnS layers. A 
numerical procedure for determining a phonon frequency is provided. This hybridized 
model is necessary to meet the simultaneous requirement on the mechanical and electro- 
static boundary conditions. The mechanical boundary condition is again the vanishing 
of the optical displacements since Si layers can be considered as infinitely rigid with 
respect to the vibrations of the ZnS layers. The electrostatic boundary conditions are 
the continuity of the electric field parallel to the interface, and the continuity of the 
displacement field normal to the interface. Based on this set of boundary conditions, 
expressions are obtained for the ionic displacements in ZnS layers consisting of LO, TO, 
and IP modes. There are scalar and vector potentials associated with the LO and IP 
modes, respectively, but no electric field associated with the TO mode. The scalar po- 
tential and its associated electric field due to the LO mode are distributed only within 
the ZnS layers and are zero in the Si layers. But the vector potential and its associ- 
ated electric field due to the IP mode have distributions in both ZnS and Si layers even 
though there is no ZnS ionic displacement mode in the Si layers. Examples of these 
mode characteristics have been demonstrated. Neither the scalar nor vector potential 
is continuous across the Si-ZnS interface, but the energy of coherent interaction with 
carriers is continuous due to the continuity of the electric field parallel to the interface. 

The analytical model for the confined optical modes consisting of polar and non- 
polar optical phonons is employed in calculating the carrier-phonon interaction. Our 
results indicate that contributions to heavy-hole intersubband scattering from confined 
Si and ZnS optical phonons strongly depend on the well width since it varies the dis- 
tributions of envelope functions of involved subbands which ultimately determines the 
intersubband scattering between them through the overlapping interference effect Gnn>- 
function. For small Si well width (< 30A), the scattering rate due to ZnS optical phonon 
is stronger than that of Si optical phonons. As the well width increases the scattering 
rate due to the Si optical phonons surpasses that of ZnS optical phonons. The scattering 
rate dependence on barrier width is relatively weak. 
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